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A STUDY ON AUTOMATIC DIAGNOSIS OF MUSCLE
TENSION DYSPHONIA BASED ON sEMG

FANG Qiang

Abstract Muscle tension dysphonia (MTD) is a kind of phonation disorder, in which no obvious organic problem
can be observed under laryngoscopy. In literature, researchers have investigated the acoustic, electromyographic,
and breathy characteristics from a statistic point of view. In this study, we explore the possibility of diagnosing
MTD based on task-related surface electromyography (sEMG) signals. In this study, the sEMG signals are collect-
ed and transformed to corresponding time and frequency domain features. Then, Flsher’ s F-ratio is adopted to se-
lect task-related features for automatic diagnosis. Four traditional classification methods( K-nearest neighbor, Clas-
sification and Regression Tree, Support Vector Machine, and Logistic regression) are implemented to discriminate
MTD patients from healthy people. It is found that the precision can be as high as 80% if proper task and classifi-
cation method are chosen.
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1. INTRODUCTION

Muscle tension dysphonia ( MTD) is a
kind of phonation disorder, in which no evi-
dent organic problem can be observed under
laryngoscopy. It is originally coined by Morri-
son [ 11] and describes adysphonia caused by
increased muscle tension of laryngeal and
And it has

known by other names including muscle mis-

paralaryngeal muscles. been

use dysphonia, hyperfunctional dysphonia,
and hyperkinetic dysphonia among others. It
is more commonly diagnosed in women, the
middle-aged, and individuals who have high
levels of stress. It is also more often seen in
those who use their voice often such as singers
and teachers.

The symptoms for MTD vary from person
to person. Hoarseness, pitch range restric-
tion, difficulty of producing voice are typical
symptoms associated with MTD. And these
symptoms can be caused by a large variety of
factors (such as emotional distress, drinking
cold water, yelling and shouting, smoking) .

MTD presumably is characterized by ex-
cessive muscular contraction, and vocal
symptoms are combined with excessive glottic
and/or supraglottic muscle tension. This sug-
gests that there may exist cues in the activities
of related muscles, the behavior of structures
in larynx, and acoustic and aerodynamic con-
sequences that help the differentiating of MTD
patients from the healthy ones.

In clinical practice, several procedures
are commonly used, such as clinical history,
endoscopic assessment, harshness rating/
perceptual assessment, and palpation rating.
Despite the widespread use of the MTD desig-
nation, diagnosis and assessment in current

clinical practice depends upon subjective in-
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terpretation of patient history and physical ex-
amination, and heavily influenced by the ex-
perience of the clinic practitioners. Hence, it
is necessary to develop some objective meas-
ure for the detection of MTD.

In literature, several studies had been
conducted to investigate whether muscle activ-
ity of the MTD patient were significantly dif-
ferent from that of the healthy control, where
the sEMG was used to detect the muscle ac-
Redenbaug and Reich [ 14] studied
sEMG levels of infrahyoid muscles in normal

and vocally MTD speakers. They found EMG
levels were significantly larger for MTD speak-

tivity.

ers. Hocevar-Boltezar et al. [ 6] investigated
the EMG feature in the perioral area and ante-
rior neck before and during phonation. Their
results showed a 6 — 8-fold increase of EMG
activity. Stepp et al. [ 16] measured sEMG to
explore the intermuscular coherence in the be-
ta band as a possible indicator of MTD. They
found the mean coherence in the beta band
was significantly lower in MTD group than
that in control group. However, there are
some experiments that do not support assess-
ing MTD with EMG features.
[17] investigated the sensitivity of the anteri-
or neck sEMG to changes in MTD associated
with injection laryngoplasty. They found the

Stepp et al.

perceptual ratings of strain and false vocal
fold ( FVF) compression were both significant-
ly reduced while sEMG was not significantly
reduced. Van Houtte et al. [7] did not detect
the increase of sEMG level in patients with
MTD and questioned the use of sSEMG as a di-
agnostic tool for distinguishing patients with
and without MTD.

Although the above-mentioned studies
did not come to an agreement, we can not
conclude that sSEMG is not appropriate for di-
agnosing MTD. It is not negligible that, most
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of the previous studies only explored few
sEMG features ( Root-Mean-Square, and co-
herence in beta band). None of them exten-
sively investigated sEMG features of related
muscles on vocal tasks. In addition, most of
them only investigated on vocal task.

In this study, we attempt to figure out
whether we can differentiate the MTD patients
from the healthy people by using the activities
of muscles in neck area measured by sEMG.
To this end, we will collect the SEMG signals
of related muscles in a few vocal/non-vocal
conditions, extract extensive sEMG features,
and conduct classification experiments based
on the extracted sEMG features.

2. DATASET

2.1 Subject information

47 MTD patients and a group of 22 nor-
mal controls are enrolled in our experiment.
The 47 patients with MTD are admitted to
Beijing Tongren Hospital affiliated to Capital
Medical University from June 2018 to January
2020, aged from 18 to 80 (mean =38, std =
17.6). Among these patients, 14 of them are
males and the other 33 of them are females.
In the normal control group, there are 22 ca-
ses, aged from 22 to 67 (mean =33. 87, std
=11.97). Twelve of them are males, and 10
of them are females. None of the subjects has
supraglottal infection, mental issue, nor mus-
cle tension disorder caused by throat surgery
or lesion. All the subjects are evaluated by
subjective auditory-perceptual assessment of
the voice, the Voice Handicap Index ( VHI),
acoustic analysis, and psychological scales

assessment.
2.2 Data collection

A multi-channel physiological recorder
( Australia COMPUMEDICS Grael 48 chan-
nels) is used to record the sEMG, Electro-
CardioGram ( ECG),

breathing signals (the change of perimeter of

nasal airflow, and
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Figure 1 Locations of electrodes of
surface EMG

the chest and abdomen) synchronously. The
audio signal of vocal sound is recorded by a
separate audio channel. In the experiment,
sEMG electrodes are attached to the left and
right parts of trapezius (TRA), SternoCleido-
mastoid muscles ( SC), SupraHyoid muscles
(SH), InfraHyoid muscles (IH) and Crico-
Thyroid muscle (CT), as shown in Fig 1.

It is hypothesized that the related mus-
cles may be activated abnormally in both vo-
cal and non-vocal tasks for MTD patients. For
this reason, the subjects are required to con-
duct both vocal and non-vocal tasks so as to
task-related sEMG signals. These
tasks recruited in the current study are as fol-
lows: turning head left (THL), turning head
right (THR), shoulder shrugging(SS), throat
cleaning ( TC), swallowing ( SW),
breathing ( DB), producing prolonged vowel /
i/ (PI), high-pitch /i/ (HI), loud /i/ (Ll),
loud and high-pitch /i/( LHI), prolonged
vowel /a/ (PA), high-pitch /a/ (HA), loud
/a/ (LA), loud and high-pitch /i/ ( LHA),
short utterance (SU) (FKE BT, fhETC
1. “I am going to Heilongjiang, he is go-

collect

deep

ing to Wuxi City” in Mandarin), loud short
utterance ( LSU) .
jects are required to take a 10-second break to

Between two tasks, sub-
avoid fatigue.

In this study, the data in task SU and
LSU are not used because the data in these



Report of Phoneitc Research 2022

RCT

(a) 013

-0.1165+
0.8327

55.51
Time (s)

RCT _waveletica

(b) 009342

-0.09316
0.8327

55.51

Time (s)

RCT _waveletica_denoised

(c) 007793

0 —1

-0.09284
0.8327 5551
Time (s)

H — denoised
n === original
i

200

400 600 800 1000

Figure 2 Examples of the original and
processed EMG signal. (a) Original signal.
(b) Original with ECG-like artifacts removed.
(¢) Original with both ECG-like artifacts and
background noise removed. (d) Spectrum of
original SEMG signal (dashed red) and denoised
sEMG signal (solid blue).

two tasks are designed to monitor temporal
variation of muscle activation and the control
of respiration that are not considered in the
current study.

2.3 Noise reduction

Usually, there are artifacts and back-
ground noise in the collected sEMG signal.
Figure 2 (a) gives an example of recorded
EMG signal, where the EMG signal sequence
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is contaminated by some periodic spikes,
called ECG-like artifacts, and evident back-
ground noise.

The ECG-like artifacts appear when the
EMG electrode is placed close to an artery.
The ECG-like artifacts will change the tempo-
ral and frequency characteristics of sSEMG sig-
nal. Therefore, the ECG-like artifacts should
be removed before feeding sEMG signal to
subsequent processing procedure.

In this study, the wavelet-ICA [ 1]
method is implemented to suppress the ECG-
like signals. To this end, firstly, a mono-
channel signal sequence is transformed to a
multi-channel signal sequence by wavelet a-
nalysis. Then, the multi-channel signal se-
quence is decomposed into several independ-
ent channels by using Independent Component
Analysis (ICA) method. After that, the sig-
nals in the channel that has the same perio-
dicity of ECG-like artifacts are removed. At
last, the final signal is synthesized by revers-
ing the aforementioned process.

As for the background noise, it is mainly
introduced by the data collecting instrument
and is assumed stationary. To suppress the
background noise, the spectrum subtraction
method [ 2] is applied, where the initial noise
spectrum is estimated from the silence portion
at the beginning of the signal sequence and
updated by using the signals in silent regions
dynamically.

Figure 2(b) gives an example of EMG
signal of RCT ( cricothyroid muscle on the
right side) after removing the ECG-like arti-
facts. Figure 2(¢) gives an example of EMG
signal of RCT by removing both ECG-like ar-
tifacts and background noise. It indicates that
the ECG-like artifacts and background noise
in the original EMG signals can be effectively
suppressed with the proposed noise reduction
procedure. Figure 2(d) demonstrates an ex-
ample of the spectrum of original sSEMG signal
(dashed red curve) and denoised sEMG sig-

nal (solid blue curve). One can see that gen-
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erally the spectrum of denoised sEMG signal
is close to that of the original sSEMG, except
that some detail frequency components are
somewhat different. This indicates that the
denoised sEMG signal preserves the nature of
the original sEMG signal.

3. FEATURES

Traditional studies on sEMG for MTD pa-
tients are mainly based on the sEMG level
[6, 7, 14]. In this study, we will extensively
explore various features and evaluate their
contribution to differentiate MTD patients from
normal control.

Generally, features for analyzing sEMG
signals can be divided into three groups: time
domain, frequency domain, and time-fre-
quency or time-scale representation. In this
study, only the time and frequency domain
features are considered.

Time domain features are based on
sEMG time series. In this study, extensive
time-domain features are adopted. They are,
Duration from rest to Maximum Amplitude
(D2MA), Maximum Phonation Time ( MPT),
Maximum AMplitude ( MAM), the Duration
to achieve Maximum AMplitude ( DMAM),
Integrated EMG, Mean Absolute Value
(MAYV) [19], Modified mean Absolute Value
type-1 (MAV1) [12], Modified mean Abso-
lute Value type2 ( MAV2) [12], Simple
Square Integral ( SSI) [4], VARiance of
EMG ( VAR) [13], the third, fourth, and
fifth Temporal Moments ( TM3, TM4, and
TM5) [15], Root Mean Square (RMS) [3],
the V-order (V) [18], LOG detector ( LOG)
feature[ 18], Waveform Length ( WL) [12],
Average Amplitude Change ( AAC) [5],
Difference Absolute Standard Deviation Value
(DASDV) [9], Zero Crossing (ZC) [8],
Myopulse Percentage Rate (MPR) [5], Wil-
son AMPlitude ( WAMP) [19], Slope Sign
Change (SSC) [8], Mean Absolute Value

Slope ( MAVS) [ 10], Multiple Hamming

Windows (MHW) Histogram of EMG ( HIST)
[3], Auto-Regressive (AR) [3], and Ceps-
tral Coefficient (CC) [ 18].

Frequency-domain features are mostly
used to study fatigue of muscle and analyze
motor unit recruitment. The frequency-domain
features used in this study are MeaN Frequen-
cy (MNF) [4], MeDian Frequency ( MDF)
[12] PeaK Frequency ( PKF) [3], MeaN
Power (MNP) [3], and ToTal Power ( TTP)
[3], the 1st, 2nd, and 3rd Spectral Moments
(SM1 - SM3) [4], Frequency Ratio ( FR)
[4], Power Spectrum Ratio ( PSR) [20],
Variance of Central Frequency ( VCF) [4].

For the MTD patient, the asymmetry ac-
tivation of muscles may occur in vocal and
non-vocal tasks. This indicates that the asym-
metry of corresponding features are possible
indicators for diagnosing MTD. Therefore, the
difference of the features between the left and
right counterparts of the same muscle are cal-
culated as additional features. Moreover, the
difference of the instants when activation oc-
curs and disappears between the left and right
counterparts of each muscle is adopted to ac-
count for the temporal asymmetry. In total,
there are 850 features for each vocal/non-vo-
cal task.

4. FEATURE SELECTION

As mentioned in the previous section,
there are 850 candidate features and 69 (47
+22) data samples for each task. The num-
ber of data sample is much smaller than the
dimensionality of extracted feature. In order
to avoid the dimension curse, it is necessary
to reduce the dimensionality of features by u-
To this

end, firstly, the original data are separated

sing feature selection techniques.

into several subsets according to their tasks
( shown in section 2. 1). Hence, we obtain 14
subsets in total. Then, for each subse the
Fisher’ s F-ratio measure is implemented to
quantify the contribution of each feature di-
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mension. Lastly, the features whose corre-
sponding F-ratios are larger than a predefined
threshold are selected. The F-ratio of the k"

feature can be calculated according to Eq. 1.

1 M
P ﬁzizl(ﬂf _Mk) n
ratio 1 1 N; ]
S B o
i=1 !

where 1! is the mean of the k" feature in
the i" category, u" is the mean of the k" fea-
ture of data samples in the whole data set, x"/
is the value of the k" feature of the j" data
sample in the i" category, M is the number of
categories (in this study M =2,), N, is the
number of samples in the i" category.

The denominator is a measure of within-
category data dispersion, while the numerator
is a measure of between-category data disper-
sion. Therefore, the larger the F-ratio is, the
larger contribution the feature makes in dis-
criminating MTD from healthy controls .

For each subset, the Fisher’ s F-ratios of
all the feature dimensions are calculated and

sorted in descending orders.

0.0 4

Figure 3 Sorted F-ratios for each non-vocal
and vocal task

As shown in Figure 3, the Fisher’ s F-ra-
tio decreases dramatically at first, then arrives
at a relative stable region. Here, we deter-
mine a predefined threshold with the elbow

criterion. In this study, for each task, the
feature dimensions with the first 10 highest F-
ratios are selected as the inputs to classifiers.
The details are shown in Table 1.

If we take a look at the details in Table
1, we can notice that the feature RMS (used
to measure muscle activation level) is not one
of the selected 10 features with the highest
contribution to discriminating the MTD pa-
tients from the controls in most vocal and non-
vocal tasks. In addition, even for similar vo-
cal task, for example producing vowel /i/,
the features that make the highest contribution
to differentiating MTD patients and controls
differs a lot. This may be the reason why the
previous studies did not come to a consistent

conclusion.

Table 1 The 10 features selected based on
F-ratio for each task

Task Muscle & feature

LIH: AR_ 4

RSH: MNP, SSI, FR_ diff
THL SC: AR_ diff_ 1, CC_ diff_ 0,
CC_ diff_ 1, CC_ diff_ 2,
CC_ diff_ 3, VCF_ diff

SC: HIST_ diff_ 4, HIST_ diff_ 7,
LSC: PKF

RSC: ZC

TRA: AR_ diff_ 4, CC_ diff_ 3,
MDF_ diff, PKF_ diff

LTRA: CC_ 3, ZC

THR

CT: MHW_ diff_ 0, MHW_ diff_ 1,
MHW_ diff_ 2

SS IH: AAC_ diff, DASD_ diff,

RMS_ diff, V_ diff, WL_ diff,

SC: DASD_ diff, AR_ diff_ 2

CT: MPR_ diff
RCT: MPR, ZC,
SC: PSR_ diff
Te LSC: PSR
LSH: DASD, MAV_ 1, RMS, V
RIH: PKF
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Task Muscle & feature Task Muscle & feature
LIH: LOG CT: MPR_ diff,
RIH: LOG LA LSC: DASD, HIST_ 0, INTE, AR_ 2,
SW LSH: LOG, MAV_ 0, MPR RMS, V,
RSH: AAC, HIST_ 0, LOG, MPR RSC: DASD, RMS, V
LTRA: ZC
TH: FR_ diff
CT: SSC_ diff, A | RH: SSC
RCT: VCF LSH: DASD, RMS, V
TRA: AR_ diff_ 2 RSC: DASD, INTE, RMS, V, WL
DB LTRA: CC_ 3
SC: MAV_ 2_ diff, MAVS_ diff_ 1
RSC: HIST_ 0, HIST_ 5, HIST_ 6,
St 8 5. EXPERIMENT
CT: FR_ diff 51 Settings
SC: FR_ diff, CC_ diff_ 2
pr | LSC: SSC Four classical classifiers are implemented
;TMPDUR’ AR_1, CC_0,55C, VCF, to explore the possibility of discriminating
TRA: CC_ diff_ 2 MTD with EMG features. They are K-nearest
CT: DUR_ aiff neighbor ( KNN), Classification and Regres-
LCT: AR_ 3 sion Tree ( CART), Support Vector Machine
IH: MNP_ diff, SM_ 1_ diff, SSI_ diff, TTP (SVM), and Logistic regression.
f i‘dlff _ KNN is a non-parametric method for
SC: DUR_ diff B : .
TRA: AR_ diff_ 3 classification. It simply stores instances of the
LTRA: AR_ 3. MAV_2 training data, and classify samples by a sim-
LSH: WL, HIST_ 0, HIST_ I, ple majority voting of the K-nearest neigh-
HIST_ 2, HIST_ 3, HIST_ 4, bors. In this study, the parameter K is 7.
LI | HIST_ 5, HIST_ 8 . : -
RSH: HIST_ 6 CART is a typical decision-tree model
SC: PSR_ diff that can be used for both classification and re-
gression tasks. In the training phase, the fea-
IH: LOG_ diff, CC_ diff_ 2, MPR_ diff A .
LSC: HIST. 1. HIST_ 2. HIST_ 8 tures for.sp.h'ttmg data sample are det}ermmfed
HLL | poc. HIST_ 1, HIST_ 2, HIST_ 5, by maximizing some predefined impurity
HIST_ 6 measure. In this study, the ‘ Gini® coefficient
is adopted to measure the impurity of the tree
LIH: DUR, SSC, WAMP nodes. And the maximum depth of the tree
RIH: DUR, SSC, WAMP is 4
PA LSH: HIST_ 1, HIST_ 2, HIST_ 3 15
}‘HSl.“_ 4 - - SVM is a method that seeks a best super-
plane to separate negative and positive exam-
SC: PSR_ diff ples. The best supper-plane is obtained by
I5C: AR_T, AR_ 2, CC_ 0, maximizing the distance between a series of
HA RSC: AR_ 2, AR_ 4

TRA: AR_ diff_ 1, MDF_ diff,
CC_ diff_ 0, CC_ diff_ 2,
CC_ diff_ 3
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support vectors (SV) and the super-plane. It
is formulated as Eq2:

~

Yy = ZieSVyi o K(x;,x) +b (2)
Where }7 , ¥, , are predicted label and the
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label of the i" SV, respectively, a; is the dual
coefficient correspond to the i" SV, K is a
kernel function. In practice, a number of ker-
In this
study, a 4™ order polynomial kernel is adopt-

nel functions can be used in SVM.

ed, and the regularization term is 1.0 in the
loss function.

Logistic regression predicts the probabili-
ties of an input by Eq3.

1

y = —(wTx+b) (3)

1 +e

Where w and b are the parameters that
define the model,
the minimum square error criterion.

and can be estimated by

5.2 Results

Classification experiments are conducted
to discriminate the MTD patients from the
For each task, 80% of the
data is used for training, and the other 20%

healthy subjects.

of the data is used for testing. Fig 4 presents
the classification accuracy of different meth-
ods, namely, KNN, CART, SVM, and logis-
tic regression, in both vocal and non-vocal
tasks.

Since the purpose of this study is to ex-
plore the possibility of automatic diagnosis of
MTD, we will focus on the classification ac-
curacy of each task. As shown in Figure 4,
the performance of different methods differs a
If we choose 80% as the
minimal acceptable accuracy of a classifier,
KNN works properly in 4 tasks ( THL, SW,
PI, and HI), CART works properly in 4 tasks
(THL, TC, HI, and LA), SVM works prop-
erly in 6 tasks (THL, TC, HI, HLI, LA,
HLA), and Logistic regression works properly
in 8 tasks (THL, THR, SS, TC, DB, LI,
HLI, PA, HA, LA).
method performs best on discriminating MTD

lot in various tasks.

The logistic regression

patients from normal subjects in various vocal
and non-vocal tasks.

For each vocal and non-vocal task, it is

found at least one of the four classifiers can
the MTD patients the
healthy ones with relatively high accuracies.
In the non-vocal task THL, MTD patients can
be recognized by all the four classifiers. In
tasks TC, HI, and LA, the MTD patients can

be recognized by three of the four classifiers.

discriminate from

It indicates that MTD patients are easier to be
recognized when conducting these vocal and
non-vocal tasks.

100%
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Figure 4 The precision of four classifiers
for diagnosing MTD patients in various
vocal and non-vocal tasks
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6. DISCUSSION

In this study, we explore the possibility
of automatic diagnosis of MTD based on task-
related sEMG signals. To this end, the sEMG
signal are collected and transformed to corre-
sponding 850 time and frequency domain fea-
tures. And Fisher’ s F-ratio is adopted to se-
lect task-related features for automatic diagno-
sis. Four traditional classification methods
( KNN, CART, SVM, and Logistic regres-
sion) are implemented to discriminate the
MTD patients and normal people. It is found
that the precision of discrimination can be as
high as 80% if proper tasks and classification
methods are chosen.

In this study, both vocal and non-vocal
task show significant differences between the
MTD patients and the healthy group, which is
different from the results of Redenbaug and
Reich’ s work [ 14]. It is found that the MTD
patients can be discriminated from normal
controls with high accuracies by using Logistic
regression method even for non-vocal tasks.
This suggests that not only vocal tasks but also
non-vocal tasks may be used in clinical prac-
tices. In the future, more data will be collect-
ed, and more advanced classifiers will be ex-
plored for tasks of discriminating MTD pa-
tients.
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