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Study Objectives: To screen all of the obstructive sleep apnea (OSA)–characteristic pronunciations, explore the pronunciations which provide a better OSA
classification effect than those used previously, and further clarify the correlation between speech signals and OSA.
Methods: A total of 158 adult male Mandarin native speakers who completed polysomnography at the Sleep Medicine Center of Beijing Tongren Hospital
from November 15, 2019, to January 19, 2020, were enrolled in this study. All Chinese syllables were collected from each participant in the sitting position.
The syllables, vowels, consonants, and tones were screened to identify the pronunciations that were most effective for OSA classification.
Results: The linear prediction coefficients of Chinese syllables were extracted as features and mathematically modeled using a decision tree model to
dichotomize participants with apnea-hypopnea index thresholds of 10 and 30 events/h, and the leave-one-out method was used to verify the classification performance
of Chinese syllables for OSA. Chinese syllables such as [leng] and [jue], consonant pronunciations such as [zh] and [f], and vowel pronunciations such as [ing] and [ai]
were the most suitable pronunciations for classification of OSA. An OSA classification model consisting of several syllable combinations was constructed, with areas
under curve of 0.83 (threshold of apnea-hypopnea index = 10) and 0.87 (threshold of apnea-hypopnea index = 30), respectively.
Conclusions: This study is the first comprehensive screening of OSA-characteristic pronunciations and can act as a guideline for the construction of OSA speech
corpora in other languages.
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BRIEF SUMMARY
Current Knowledge/Study Rationale: Patients with obstructive sleep apnea (OSA) have speech abnormalities compared to healthy individuals, and
speech signals can be used to assess the severity of OSA. However, comprehensive screening and evaluation of OSA-characteristic pronunciations and
speech corpus have not been performed.
Study Impact: This study is the first systematic screening of OSA-characteristic pronunciations and will help to improve the effectiveness of speech signals
for OSA assessment.

INTRODUCTION

With advancements in medical knowledge and health care
awareness, obstructive sleep apnea (OSA) has received increas-
ing attention as a primary disease that can trigger or aggravate
multisystem diseases (eg, hypertension, coronary heart disease,
diabetes mellitus, etc).1,2 OSA is caused by intermittent upper
airway collapse during sleep, manifested by snoring and sleep
apnea with hypopnea, and accompanied by varying degrees of
decreased oxygen saturation and sleep structure disorders.3 In
addition to causing a variety of diseases, OSA can lead to
reduced concentration during wakefulness, low work efficiency,
and even drowsiness, leading to various accidents in daily life.4

OSA is a widely prevalent problem in the general population.5

There were an estimated 936 million patients with OSA

worldwide in 2019, including 176 million in China,6 based on
American Academy of Sleep Medicine (AASM) 2012 diagnostic
criteria. However, a large number of patients with OSA are only
concerned with snoring symptoms and do not feel that they need
to go to hospital, so many patients with OSA go undiagnosed. The
number of undiagnosed patients with OSA in the United States is
estimated to be 24 million.7 Even when they do go to hospital, the
gold standard for diagnosing OSA, polysomnography (PSG), is
difficult to complete quickly because it is time consuming and the
waiting time for an appointment can be several weeks. In addition,
PSG is difficult to perform in primary care hospitals because it
requires complex testing instruments and specialized sleep techni-
cians for data analysis and interpretation. Therefore, an effective
out-of-hospital assessment of individuals who may have OSA
would help to increase the rate of OSA visits and diagnosis.
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The Stop-Bang sleep questionnaire is the tool most commonly
used to screen for OSA, but results from the questionnaire are
influenced by self-reported factors and have low specificity, espe-
cially for patients with severe OSA, in whom the results have spe-
cificity less than 50%.8

The speech signal is ideal for the evaluation of OSA, as this
information can be easily and quickly obtained and contains a
large number of individual characteristics. Earlier studies have
identified characteristic differences in the upper airway structure
of patients with OSA compared to healthy individuals, and these
combined with the effects of long-term snoring can result in
patients with OSA developing abnormalities in their speech,
including articulation, phonation, and resonance abnormalities.9

Based on this, researchers have studied the characteristics of
abnormal speech signals in patients with OSA to evaluate the
severity of the disease. In 2009, Pozo et al presented experimental
findings regarding the discriminative power of the Gaussian mix-
ture model applied to severe apnea detection and achieved an 81%
correct classification rate.10 In 2012, Benavides et al improved the
correct classification rate to 85% by using hidden Markov mod-
els.11 After that, researchers then successively used speech fea-
tures to screen for OSA and obtained satisfactory results.12–14

A speech corpus refers to a collection of selected linguistic mate-
rials used for some specific purpose of phonological research. How-
ever, earlier studies did not screen the speech corpus used to capture
speech signals of patients with OSA, and mainly selected the com-
mon vowels /a/, /e/, /i/, /o/, /u/ or sentences as the speech corpus.
According to results from our earlier study, different pronunciations
affect the classification of OSA.15 Therefore, we considered it desir-
able to perform a more comprehensive pronunciation screening on
patients with OSA to determine the most suitable pronunciations
for OSA classification. Our goals were to improve the efficacy of
speech signals as an assessment of the severity of OSA, lessen the
burden of recordings on individuals, and further elucidate the asso-
ciation between speech signals and OSA.

METHODS

Participants
This study included 158 adult male Mandarin native speakers who
visited Beijing Tongren Hospital between November 15, 2019, and

January 19, 2020, and who were experiencing sleep snoring. The
study excluded individuals with the following conditions: recent
upper respiratory tract infection, allergic rhinitis, sinusitis, chronic
obstructive pulmonary disease, vocal cord disorders, history of pha-
ryngeal surgery, craniofacial trauma or deformity, history of speech
disorders, or history of psychiatric disorders. Central sleep apnea
was excluded after PSG had been performed. Basic information
such as age, weight, height, and neck circumference were collected
from the participants. All individuals underwent PSG at the Sleep
Center of Beijing Tongren Hospital and were grouped according to
apnea-hypopnea index (AHI) thresholds of 10 events/h and
30 events/h, as shown in Table 1. The study was approved by the
Ethics Committee of Beijing Tongren Hospital, no. TRECKY2019-
049. All participants in this study signed informed consent forms.

Speech signal collection
Before sleep monitoring, the participants were recorded in a sitting
position in a quiet environment and in a calm state using a Sony
PCM-D10 recorder with a sampling frequency of 44,100 Hz and a
16-bit quantization accuracy. The recorder was placed approxi-
mately 50 cm from the participant’s head. In total, 374 Chinese
syllables were collected from each individual (see Table S1 in the
supplemental materials for details), with a duration of about 1 sec-
ond and an interval of about 1 second for each syllable. A full
audio recording of all syllables has been uploaded in the supple-
mental material, read by Yiming Ding, one of the authors of this
article, a maleMandarin native speaker.

Polysomnography
In this study, PSG was performed on all of the participants
using the Philips Respironics G3 sleep diagnostic system,
which included 2-channel electroencephalography (C3/M2, C4/
M1), 2-channel electro-oculography, anterior tibial electromyo-
gram, electrocardiogram, 2-channel airflow measurement with
nasal cannula pressure, recording of respiratory (thoracic and
abdominal) movements, and pulse oximetry for oxygen satura-
tion. All of the electrocardiogram and electro-oculography
channels were captured at a sampling frequency of 200 Hz and
displayed with a 0.3–35-Hz bandpass filter. Anterior tibial elec-
tromyogram had a sampling rate of 200 Hz, and the bandpass
filter was 10–100 Hz. Three PSG technologists, each with more

Table 1—Participant characteristics.

Threshold: AHI = 10 events/h Threshold: AHI = 30 events/h

AHI > 10 (n = 117) AHI ≤ 10 (n = 41) P AHI > 30 (n = 80) AHI ≤ 30 (n = 78) P

Age (years) 39.3 ± 8.77 39.1 ± 11.0 .9288 39.3 ± 9.03 39.2 ± 9.77 .9294

Height (cm) 174 ± 5.61 175 ± 5.38 .2034 174 ± 5.79 174 ± 5.36 .9480

Weight (kg) 85.2 ± 12.5 80.1 ± 10.2 .0191 87.8 ± 11.8 79.9 ± 11.1 < .001

BMI (kg/m2) 28.1 ± 3.48 26.1 ± 3.21 .0013 28.9 ± 3.35 26.3 ± 3.19 < .001

NC (cm) 41.7 ± 3.25 39.8 ± 2.54 .0009 42.3 ± 3.04 40.1 ± 2.95 < .001

AHI (events/h) 46.3 ± 23.6 5.47 ± 2.97 <.0001 59.4 ± 16.1 11.4 ± 7.69 < .001

AHI = apnea-hypopnea index, BMI = body mass index, NC = neck circumference.
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than 10 years’ experience, scored sleep stages and respiratory
events in accordance with the American Association of Sleep
Medicine (AASM 2012) guidelines.16 AHI is defined as the
number of apneic and hypopneic events per hour of sleep and is
used to indicate the severity of sleep apnea.

Speech signal processing and modeling
We preprocessed the speech data composed of Chinese single-
character syllables, extracted the linear prediction coefficients
(LPC) frame-by-frame, and performed mathematical modeling
using a decision tree model to obtain the classification perfor-
mance of single-character syllables for OSA using the leave-one-
out validation method. The results were then combined to obtain
the average performance of Chinese vowels and consonants in
OSA classification. The specific process is shown in Figure 1.

Preprocessing and feature extraction

Considering that Chinese single-character syllables include a
vowel part and a consonant part, and the vowel part is more

variable, by including single vowels (eg, [a], [i]) and compound
vowels (eg, [iao], [uai]) in the preprocessing stage, we expected
to synthesize the pronunciation characteristics of each part of
the single character for problem modeling and prediction.
Instead of using the customary �20–40-ms speech frame
length, we divided the pronunciation into 6 equal frames based
on the stages of the single-character syllable, and the frame
length floated from 50 ms to 70 ms according to the pronuncia-
tion length. The patients’ pronunciation was slow and steady,
so short-time smoothness of speech was guaranteed. The com-
parison test determined that segment 2 was the stage at which
the consonants were clearer, and segments 3 and 5 were the
stages at which the vowels were clearer. Taking the syllable
[hua] as an example, there are 3 pronunciation stages: [h], [u],
and [a]. The syllable segmentation is shown in Figure 2. The
first row of Figure 2 shows the waveform of syllable [hua], the
second row shows the waveform of the pronunciation of the syl-
lable cut into 6 segments on average, the third row shows the
fast Fourier transform amplitude spectrum of each segment,

Figure 1—Flow diagram for extraction and modeling of speech signal features.

First, each single-character syllable from each patient was divided into 6 equal segments, and LPC features were extracted from segments 2, 3, and 5. The top 10
orders of LPC coefficients were taken for each segment, stitched together to obtain 30-dimensional features, and these features were recorded in a table. After
that, the features were selected for all patients under each single-character syllable for decision tree modeling and leave-one-out validation, and the prediction
results were obtained for each single-character syllable for each patient. Finally, the relevant single-character syllables were selected according to their vowels or
consonants, and their prediction results were voted on for each patient to obtain the prediction results for that patient. Then the prediction performance was evalu-
ated as the average performance for that vowel or consonant. FFT = fast Fourier transform, LPC = linear prediction coefficients.

 
 

 

Report of Phoneitc Research 2022

214



and the fourth row shows the LPC amplitude spectrum of each
segment. It can be seen that the first segment contains a change
from silence to the beginning of articulation, which is not in
line with the short-term stability; the second segment is mainly
pronounced with the consonant [h] and part of the vowel [u];
the third segment is mainly pronounced with the vowel [u], and
the frequency point of the second resonance peak of the LPC
spectrum is shifted to the right compared with the second seg-
ment; the fourth segment is the conversion stage from vowel [u]
to vowel [a], and the LPC spectrum is also changing synchro-
nously; the main pronunciation of the fifth segment is vowel
[a], and its LPC spectrum is quite different from that of the sec-
ond and third paragraphs. The main pronunciation of the sixth
segment is still vowel [a], but the waveform amplitude is small.
By consensus, we selected the LPC coefficients of the second,
third, and fifth pronunciation segments to be spliced together as
the training features of the word for machine learning. We
extracted the common speech features including formants
(F1–F4), Mel frequency cepstral coefficients and their first- and
second-order difference splicing, filter banks (fbanks) and their

first- and second-order difference splicing, linear prediction
coefficients, and linear prediction cepstral coefficients.
Through comparative experiments based on classification per-
formance, we determined the top 10 coefficients of LPC to be
the most suitable characteristics for resolving problems related
to Chinese single-character syllables. The 3 stages of speech
signals provide us with Chinese single-character syllable fea-
tures with a feature dimension of 30, which achieves a more
effective feature-dimension compression.

Problem modeling and prediction

We modeled the problem using a decision tree model. We
hoped to obtain the performance of all Chinese single-character
syllables for OSA classification, so we used the leave-one-out
cross-validation method to collect all available patient data for
each Chinese single-character syllable, perform feature extrac-
tion, model prediction, and performance evaluation, and finally
obtain the classification performance for each Chinese single-
character syllable. As the performance of a single-character syl-
lable was unreliable, it was important to obtain a more stable

Figure 2—Syllable syncopation diagram.

Taking the syllable [hua] as an example, there are 3 pronunciation stages: [h], [u], and [a]. The first row of the figure shows the waveform for syllable [hua], the sec-
ond row shows the waveform for the pronunciation of the syllable cut into 6 segments on average, the third row shows the FFT amplitude spectrum for each seg-
ment, and the fourth row shows the LPC amplitude spectrum for each segment. It can be seen that the first segment contains a change from silence to the
beginning of articulation, which is not in line with the short-term stability; the second segment is mainly pronounced with the consonant [h] and part of the vowel [u];
the third segment is mainly pronounced with the vowel [u], and the frequency point of the second resonance peak of the LPC spectrum is shifted to the right com-
pared with the second segment; the pronunciation of the fourth paragraph is the conversion stage from vowel [u] to vowel [a], and the LPC spectrum also changes
synchronously; the main pronunciation of the fifth paragraph is vowel [a], and its LPC spectrum is quite different from that of the second and third paragraphs; the
main pronunciation of the sixth paragraph is still vowel [a], but the waveform amplitude is small. Considering them together, we selected the second, third, and fifth
pronunciation segments to be spliced together as the training features. FFT = fast Fourier transform, LPC = linear prediction coefficients.
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and reliable performance, and to determine the classification
performance for each vowel and consonant, to facilitate the sub-
sequent analysis. To do this, we calculated the classification
performance for each vowel and consonant based on the results
for single-character syllables containing the same vowel or con-
sonant for each patient. The result treats the majority of multi-
ple classification results as the final result. Specifically, we
selected the prediction results for all single-character syllables
containing a certain vowel or consonant and voted them by the
patient, from which the positive and negative class prediction
results for patients were obtained and the prediction perfor-
mance was evaluated as the average performance for that vowel
or consonant.

RESULTS

Participant characteristics
In this study, all participants were dichotomized 2 times with
the AHI = 10 events/h classification to initially determine
whether participants had OSA, and then using the AHI = 30
events/h classification to determine whether participants had
severe OSA. The specific information on participants after
grouping is shown in Table 1.

Classification results for the Chinese syllables,
consonants, vowels, and tones of participants
The participants were dichotomized using different Chinese
syllables, consonants, vowels, and tones with thresholds of AHI
= 10 and 30 events/h, and the classification effects for each are
shown in Table 2, Table 3, Table 4, and Table 5, respectively,
arranged in descending order for each classification effect index
(including area under curve [AUC], accuracy, precision,

sensitivity, and specificity). Only the 2 best and worst effects
are listed for each item.

For syllables, the classification effect for [leng] and [gua] is
better when the threshold of AHI = 10 events/h is used for clas-
sification, and the classification effect for [jue] and [qia] is bet-
ter when the threshold of AHI = 30 events/h is used (Table 2).
The complete Chinese syllable classification results are shown
in Table S2 in the supplemental material.

For consonants, the average classification effect for all Chinese
syllables containing a certain consonant was used as the classifica-
tion effect for that consonant. The classification effect for [zh] and
[d] is better when the threshold of AHI = 10 events/h is used for
classification, and the classification effect for [f] and [q] is better
when the threshold of AHI = 30 events/h is used (Table 3). The
complete consonant classification results are shown inTable S3 in
the supplemental material.

For vowels, the average classification effect for all Chinese
syllables containing a certain vowel was used as the classifica-
tion effect for that vowel. The classification effect for [ing]
and [in] is better when the threshold of AHI = 10 events/h is
used for classification, and the classification effect for [ai] and
[ia] is better when the threshold of AHI = 30 events/h is used
(Table 4). The complete vowel classification results are shown
in Table S4 in the supplemental material.

For tones, the average classification effect for all Chinese
syllables containing a certain tone was used as the classifica-
tion effect for that tone. There are 4 tones in Chinese sylla-
bles, which are represented by “1”, “2”, “3”, and “4”. The
classification of Chinese syllables with tones 1 and 3 is better
when the threshold of AHI = 10 events/h is used for classifi-
cation, and the classification of Chinese syllables with tones 2
and 1 is better when the threshold of AHI = 30 events/h is
used (Table 5).

Table 2—Classification results for Chinese syllables of participants.

Threshold: AHI = 10 events/h

AUC Accuracy Precision Sensitivity Specificity

leng (0.74) xi (77.9%) bin (86.2%) xi (87.8%) bin (69.2%)

gua (0.73) qiu (76.7%) qu (84.4%) ni (87.0%) ban (61.0%)

…… …… …… …… ……

cuo (0.47) ke (46.4%) sen (64.8%) suan (57.3%) hu (5%)

sa (0.46) bang (43.5%) bang (44.4%) bang (51.3%) tong (5%)

Threshold: AHI = 30 events/h

AUC Accuracy Precision Sensitivity Specificity

jue (0.70) yin (73.9%) hong (74.3%) yin (76.9%) cha (72.5%)

qia (0.70) cha (71.4%) cha (72.5%) dui (74.7%) cui (72.0%)

…… …… …… …… ……

se (0.48) zhuai (39.0%) kuan (37.5%) kuan (30.9%) ruo (33.8%)

guai (0.47) kuan (37.4%) zi (37.3%) shei (30.9%) luo (29.9%)

The classification effects are arranged in descending order. Only the 2 best and worst effects are listed for each item. The complete Chinese syllable
classification results are shown in Table S2. AHI = apnea-hypopnea index, AUC = area under curve.
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Construction of OSA classification model
To construct a robust and effective OSA classification model, 10
syllables with highest AUC values are combined for OSA classi-
fication. For the group taking AHI = 10 as the threshold, the 10
syllables with highest AUC values are [leng], [gua], [ding], [ba],
[lue], [ting], [du], [pu], [qiong], and [xue]. The receiver operating
characteristic curve is shown in Figure 3A, with an AUC of
0.83. For the group using AHI = 30 as the threshold, the 10 sylla-
bles with highest AUC values include [jue], [qia], [zhui], [yu],
[fu], [li], [wei], [ta], [jiu], and [xing]. The receiver operating
characteristic curve is shown in Figure 3B, with an AUC of

0.87. The complete classification results of the model are shown
inTable 6.

DISCUSSION

To the authors’ knowledge, this is the first time that a compre-
hensive screening of pronunciations has been conducted to assess
OSA. It was found that the classification effect for different pro-
nunciations used to assess OSA had obvious differences. Chinese
syllables such as [leng] and [jue], consonant pronunciations such

Table 4—Classification results for vowels of participants.

Threshold: AHI = 10 events/h

AUC Accuracy Precision Sensitivity Specificity

ing (0.73) ian (68.5%) iu (86.1%) ian (75.3%) €u (75.0%)

in (0.72) ei (66.7%) €u (85.5%) a (70.1%) iu (73.2%)

…… …… …… …… ……

o (0.43) ia (49.0%) uan (71.4%) ue (49.1%) ou (39.0%)

uai (0.35) uan (47.1%) uai (71.4%) uan (47.4%) un (34.1%)

Threshold: AHI = 30 events/h

AUC Accuracy Precision Sensitivity Specificity

ai (0.72) ang (67.2%) ang (70.5%) €u (71.8%) ang (73.1%)

ia (0.67) in (67.1%) in (67.1%) iu (70.2%) eng (70.8%)

…… …… …… …… ……

ou (0.47) ian (52.0%) o (51.1%) u (47.3%) iang (46.7%)

uai (0.40) ei (50.4%) ei (50.6%) o (43.3%) ei (40.0%)

The classification effects are arranged in descending order. Only the 2 best and worst effects are listed for each item. The complete vowel classification results
are shown in Table S4. AHI = apnea-hypopnea index, AUC = area under curve.

Table 3—Classification results for consonants of participants.

Threshold: AHI = 10 events/h

AUC Accuracy Precision Sensitivity Specificity

zh (0.71) sh (67.5%) sh (85.9%) x (87.8%) sh (67.5%)

d (0.70) h (66.2%) h (84.8%) n (87.0%) q (65.0%)

…… …… …… …… ……

r (0.49) b (46.4%) r (74.5%) s (57.3%) f (36.6%)

k (0.44) s (43.5%) s (70.2%) b (51.3%) r (32.5%)

Threshold: AHI = 30 events/h

AUC Accuracy Precision Sensitivity Specificity

f (0.68) n (69.8%) x (72.1%) n (71.4%) h (72.2%)

q (0.68) x (69.6%) h (71.0%) b (69.6%) x (71.2%)

…… …… …… …… ……

zh (0.51) f (50.3%) k (51.4%) sh (44.3%) zh (50.0%)

p (0.49) k (50.0%) f (51.2%) m (44.2%) f (45.9%)

The classification effects are arranged in descending order. Only the 2 best and worst effects are listed for each item. The complete consonant classification
results are shown in Table S3. AHI = apnea-hypopnea index, AUC = area under curve.
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as [zh] and [f], and vowel pronunciations such as [ing] and [ai]
had the best classification effects. An OSA classification model
consisting of several syllable combinations was constructed,
with AUCs of 0.83 (threshold of AHI = 10) and 0.87 (threshold
of AHI = 30), respectively, confirming that the speech signal had
desirable efficacy when used for OSA assessment.

In 1989, Fox et al confirmed that the speech signal in patients
with OSA was different from that in healthy individuals,8 and
since then, further research has been carried out. However, many
of the earlier studies selected 2 groups of participants with large
differences in AHI for comparative analysis. Although producing
better results than previous samples, these groups could not be
used for comprehensive assessment of OSA as they did not
include cases with AHI between 10 and 30 events/h.17–19 In our
study, all participants were dichotomized 2 times with the AHI =
10 events/h classification to initially determine whether partici-
pants hadOSA, and then again with the AHI = 30 events/h classifi-
cation to determine whether participants had severe OSA, thus
allowing the model to assess the severity of disease more compre-
hensively in patients with OSA.

Previous OSA-related speech studies usually selected continu-
ous vowels and sentences as the speech corpus, and the vowels
selected, /i/, /e/, /a/, /o/, /u/, were considered able to cover compre-
hensively the speech signals of participants.20,21 However, using 5
vowels is far from sufficient, and a variety of combinations can
arise between the vowels, in addition to a large number of conso-
nant pronunciations that were not included. Regarding the selec-
tion of sentences, Pozo et al first selected 4 Spanish sentences,10

which were widely used in subsequent studies, and their choice of
utterances contained consecutive vowels /a/ and /i/, nasals and
nonnasals, and a certain number of voiced sounds, speech features
that were considered to differ between OSA and non-OSA individ-
uals. Even so, that study did not implement a comprehensive
screening and discussion of OSA-specific pronunciations, and it is
impossible to be sure that the selected corpus contained all OSA-
specific speech signals. Our study was based on Chinese pronunci-
ation, and syllables containing all vowel-consonant combinations

were used as the speech corpus. We found that different pronunci-
ations had very different effects on OSA classification, and that a
selection of syllables, vowels, and consonants gave better results
for OSA classification, and thus they would be useful for the con-
struction of OSA-specific corpora in other languages.

Interestingly, we found that comparing the results for AHI = 10
and AHI = 30 events/h, the syllables, vowels, consonants, and
tones offering the best classification effect were different. For
example, when AHI = 10 events/h, the syllable with the best clas-
sification effect is [leng], while when AHI = 30 events/h, the sylla-
ble with the best classification effect was [jue], and even the top 10
syllables with the best classification effect were not the same. It is
speculated that the degree of speech abnormalities between the
2 groups would be unequal when different AHI thresholds are
used. Most of the participants with AHI < 10 events/h were
healthy people, and the degree of abnormal speech was low. How-
ever, there were many patients with OSA among the participants
with AHI > 10 events/h. The degree of abnormal speech was very
different from that in participants with AHI < 10 events/h. Never-
theless, there were a certain number of patients with OSA among
the participants with AHI < 30 events/h, and the difference in the
degree of speech abnormality was relatively small compared with
participants with AHI > 30 events/h. This led to differences with
those syllables, vowels, and consonants having good classification
results when the thresholds AHI = 10 and AHI = 30 events/h were
considered. Therefore, we believe that the best speech corpus may
be different for different levels of OSA classification, and it may
be difficult to classify OSA in different levels using a unified
speech corpus. Therefore, the best corpus to evaluate the degree of
OSA should be selected according to the setting.

All Chinese syllables are composed of consonants and vow-
els. For example, the syllable [ding] is composed of consonant
[d] and vowel [ing]. In our study, comparing the classification
results for syllables with consonants and vowels, we found that
the syllables with the best classification effect were not com-
posed of the consonants and vowels with the best classification
effect. For example, when AHI = 10 events/h was used for

Table 5—Classification results for tones of participants.

Threshold: AHI = 10 events/h

AUC Accuracy Precision Sensitivity Specificity

1 (0.62) 2 (69.6%) 3 (84.9%) 2 (71.8%) 3 (65.9%)

3 (0.61) 3 (67.9%) 2 (84.8%) 4 (69.2%) 2 (63.4%)

2 (0.56) 4 (65.0%) 1 (81.6%) 3 (68.7%) 1 (53.8%)

4 (0.55) 1 (64.7%) 4 (81.0%) 1 (68.4%) 4 (52.5%)

Threshold: AHI = 30 events/h

AUC Accuracy Precision Sensitivity Specificity

2 (0.68) 1 (68.8%) 1 (70.3%) 2 (68.5%) 1 (71.1%)

1 (0.67) 2 (67.1%) 2 (66.7%) 1 (66.7%) 2 (65.8%)

4 (0.65) 3 (62.0%) 3 (60.8%) 3 (64.9%) 3 (59.2%)

3 (0.60) 4 (60.1%) 4 (59.0%) 4 (64.5%) 4 (55.8%)

There are 4 tones in Chinese syllables, which are represented by “1”, “2”, “3”, and “4”. AHI = apnea-hypopnea index, AUC = area under curve.
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classification, the syllable with the best classification effect was
[xi], while the consonants and vowels with the best classifica-
tion effect were [sh] and [ian], respectively, which did not match.
Indeed, this was the case for the top 10 syllables, consonants, and

vowels. The reason for this may be that, in the process of syllable
pronunciation, the structure of the upper airway is constantly
changing due to the actions of the lips, tongue, and surrounding
muscles. In this process, speech signals other than the consonants

Figure 3—The ROC curves for syllables combination of participants.

Ten syllables with highest AUC values were combined for OSA classification. For the group taking AHI = 10 as the threshold, the ROC curve is shown in (A), with
an AUC of 0.83. For the group taking AHI = 30 as the threshold, the ROC curve is shown in (B), with an AUC of 0.87. AHI = apnea-hypopnea index, AUC = area
under curve, OSA = obstructive sleep apnea, ROC = receiver operating characteristic.
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and vowels in the syllable may be produced. Due to the complex-
ity of the speech formation and pronunciation processes, how to
match different speech signals to their corresponding upper air-
way states requires further study.

Limitations
Since this study used all of the Chinese syllables as the corpus to
record the participants, the process was time consuming, and thus
single-sitting recordings were made in the seated position, because
the participants had difficulty in cooperating with multiple record-
ings and different positions. In future studies, the corpus will be fil-
tered and streamlined to allow for multiple recordings in multiple
positions. Due to the small number of female and pediatric partici-
pants, it was difficult to construct a stable prediction model, so only
adult male participants were included in this study. In future stud-
ies, an expanded sample size is expected to be included in the anal-
ysis to explore female- and pediatric-specific speech in patients
with OSA. Due to the limited sample size and the small number of
participants with AHI < 5 events/h, we selected the same AHI = 10
and 30 events/h cut-offs for classification as in most earlier studies
to facilitate comparison of results. The next step is to expand the
sample size to allow for dichotomous and multicategory studies
with multiple AHI cut-offs. This study is based only on Chinese
pronunciation, so its generalizability is limited, but it can act as a
reference for other languages with similar pronunciations.

CONCLUSIONS

In this study, a comprehensive screening of pronunciation was
conducted in patients with OSA for the first time. Several char-
acteristic pronunciations were identified as more effective for
OSA classification than those used previously, which will be
helpful in improving the evaluation of speech signals in patients
with OSA. In order to obtain more accurate classification
results, a speech corpus should be selected to contain speech
signals that can classify different degrees of OSA.

ABBREVIATIONS

AHI, apnea-hypopnea index
AUC, area under curve

LPC, linear prediction coefficients
OSA, obstructive sleep apnea
PSG, polysomnography
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