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Abstract

Question detection from dialogs is important in human-

computer interaction systems. Recent studies on question detec-

tion mostly use recurrent neural network (RNN) based methods

to process low-level descriptors (LLD) of the utterance. How-

ever, there are three main problems in these studies. Firstly,

traditional LLD features are defined based on human a pri-

ori knowledge, some of which are difficult to be extracted

accurately. Secondly, previous studies of question detection

only consider features from amplitude information and ignored

phase information. Thirdly, previous studies show that the con-

text in an utterance is helpful to detect question, while the con-

text between utterances is not well investigated in this task. To

cope with the aforementioned problems, we propose a CNN-

BLSTM based framework, where amplitude information is ob-

tained from the combination of spectrogram and LLD, and pro-

cessed together with the phase information. Our framework also

models the context information in the dialog. From the experi-

ments on Mandarin dialog corpus, we revealed the effectiveness

of the integrated feature with both amplitude and phase in ques-

tion detection. The results indicated that the phase feature was

helpful to detect the questions with a short duration, and the

context between utterances was beneficial to detect questions

without special interrogative forms.

Index Terms: question detection, amplitude, phase, convolu-

tional neural network, bidirectional recurrent neural network

1. Introduction

Question detection from conversations is very critical in human-

computer interaction systems. The detected questions can be

applied to automatic transcription of punctuation marks, meet-

ing summarization with question/answer pairs, thus providing

useful information for identifying speakers’ roles and under-

standing users’ intentions. However, question detection is still

a challenging issue. It is insufficient to define a feature based

only on human a priori knowledge for question detection. And

some of the artificially defined features cannot be extracted ac-

curately. Besides, it is still difficult to detect questions from the

spontaneous speech in Mandarin because of its diverse patterns

with varied forms of intonation and expression.

Previous works on question detection from the speech sig-

nal consider mostly acoustic and prosodic features. Shriberg et

al. investigated the function of different prosodic features in di-

alog act classification, including statement, question, backchan-

nel etc [1]. The prosodic features they used were F0, energy,

*Corresponding author

duration, pause and so on. Their study revealed the great poten-

tial of prosody for identifying English dialog acts. The further

work was conducted on F0-based prosodic features in different

languages such as French and Vietnamese [2][3]. Researchers

to follow used extended acoustic and prosodic features that are

called low-level descriptors (LLDs). The LLDs commonly in-

clude energy, spectral, and/or voice related features, and other

statistical features of speech sound. Tang et al. worked on ques-

tion detection by using 65 LLDs with an RNN-based model

[4]. Ortega and Vu classified dialog acts by combining lex-

ical features and 13-dimensional Mel-frequency cepstrum co-

efficients (MFCC), and their result explored that the acoustic

features are helpful to recognize questions [5]. Arsikere et al.

proposed a number of new statistical acoustic features for dialog

act classification [6]. Their work demonstrated significant dif-

ferences of histograms between questions and statements. Wei

et al. used prosodic and MFCC features to detect interrogative

intonation in Mandarin, which was successful under a speaker-

independent condition [7].

Although the previous works above have shown the effec-

tiveness of the common features such as F0, pause and so forth,

some problems still remain. Firstly, most of the features used

are artificially defined depending on human a priori knowledge.

However, it is difficult to extract these features accurately. Fur-

thermore, there may be other under-explored features in speech

signal that further contribute to detecting question. As a rep-

resentation of amplitude information in speech signals, spec-

trograms can be exploited to extract effective features. Direct

applications of spectrograms were found successful for speech

recognition [8][9], speaker verification [10] and emotion recog-

nition [11][12]. In the present work we follow this path, and

investigate the effectiveness of spectrogram for question detec-

tion. Secondly, frequency properties of speech signals consist

of two parts: the amplitude and phase information. However,

prior research efforts in question detection mainly focus on

the amplitude-based features without considering phase-based

features. In recent, the role of phase information is investi-

gated in many tasks such as speech enhancement [13], speech

recognition [14], emotion recognition [15], anti-spoofing [16],

and speaker identification [17][18]. In this study we explores

whether phase-based features are meaningful to detect ques-

tions. Thirdly, the context information in a dialog contains two

types of cues, one is the context between words in an utterance,

and the other one is between utterances in a dialog. Previous

studies showed that the word-level context is effective on ques-

tion detection [4], whereas the effect of utterance-level context

on question detection performance has not been fully explored.

To address the above problems, we investigate the effec-
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tiveness of three-category information (amplitude, phase and

context between utterances) in the speech signals for question

detection. Specifically, we extract features of amplitude and

phase according to the methods described in Section 2. Then

we take advantage of a convolutional neural network (CNN)

to fuse different features and extract the high-level representa-

tion of each utterance. Besides, we adopt a bidirectional long

short term memory (BLSTM) mechanism to model the context

information connecting adjacent utterances, thus exploring the

significance of context information during detecting questions

from dialogs.

2. Feature Description and Extraction

As shown in the formula (1), the spectrum of speech signal can

be calculated by using Discrete Fourier Transform (DFT).

X(ω, t) = |X(ω, t)| ejθ(ω,t)
, (1)

where |X(ω, t)| is the amplitude spectrum, and θ(ω, t) is the

phase at frequency ω, and time t. To obtain the best available

information of the speech signal, the pair of features including

amplitude and phase is extracted. The following is the descrip-

tion of the features and the methods for extraction.

2.1. Amplitude Information

2.1.1. Spectrogram with Log Magnitude Spectrum

The log magnitude spectrum is the logarithm of the magnitude

part of the signal’s Fourier transform |X(ω)|:

L(t, ω) = log(|X(t, ω))|). (2)

The spectrum contains considerable information about the in-

put speech signal, such as formant, pitch, harmonic structure

and so on. The logarithmic operation on the spectrum can bet-

ter describe the differences in the frequency domain, which is

also consistent with the characteristics of the human auditory

system.

2.1.2. Mel Frequency Cepstral Coefficient (MFCC)

As one of the most popular LLDs in speech processing, the

MFCC reflects amplitude-based information of the speech sig-

nal. It is defined as the formula (2):

Ci =

√

2

N

N
∑

j=1

Ljcos
(

πi

N
(j − 0.5)

)

, (3)

where N is the number of Mel-frequency bins of log spectrum

L, and i is the number of cepstral coefficients. The MFCC un-

dergoes a cepstral analysis on the log magnitude spectrum along

the Mel frequency scale. As we know, Mel-Frequency analysis

is based on experiments of human speech perception, thus it per-

tains characteristics similar to the human ear. This point makes

the MFCC suitable to play a role as a feature in speech studies.

2.2. Phase Information

2.2.1. Modified Group Delay Cepstral Coefficients (MGDCC)

The original phase information is difficult to be analyzed di-

rectly because all the values are wrapped in (−π, π), which is

called the phase wrapping. To overcome this problem, the group

delay is introduced. Then, many studies shows that the modified

group delay performs better than the original group delay fea-

ture [19][20][21][22]. The modified group delay function can

be defined as follows:

τm(ω) =

(

τ(ω)

|τ(ω)|

)

(|τ (ω)|)α , (4)

τ (ω) =
XR(ω)YR(ω) +XI(ω)YI(ω)

|S (ω)|2γ
, (5)

where X(ω) and Y (ω) denote the Fourier transform of the sig-

nal x(n), and nx(n), respectively. Subscripts R is the real part

of the Fourier transform, while I is the imaginary part. S(ω)
denotes the cepstrally smoothed X(ω), and the ranges of α and

γ are (0 < α ≤ 1), and (0 < γ ≤ 1), respectively.

It can be seen that the amplitude information X(ω) is re-

quired when calculating the MGDCC. Therefore, the MGDCC

contains both amplitude and phase information to some extent.

2.2.2. Relative Phase

It is a problem that the original phase information changes de-

pending on the clipping position of the input speech even at the

same frequency. To solve it, the relative phase is proposed by

Wang, et al. [23]. According to the definition of the relative

phase, the phase of a certain base frequency ω is kept constant,

and the phases of other frequencies are estimated relative to the

base. As an example, by setting the base frequency ω to 0, the

following formula is obtained:

X
′

(ω) = |X (ω)| × e
jθ(ω) × e

j(−θ(ω))
, (6)

and for the other frequency ω
′

= 2πf
′

, the spectrum becomes

X
′

(ω
′

) = |X
′

(ω
′

)| × e
jθ(ω

′

) × e
j ω

′

ω
(−θ(ω))

. (7)

In this way, the phase information can be normalized as:

θ̃(ω′) = θ(ω′) +
ω′

ω
(−θ(ω)). (8)

It can be seen that relative phase values are calculated from

the pure phase part without using amplitude information. This

means that the relative phase contains only phase information.

3. Model Description

Previously, the most commonly used models for question de-

tection are the support vector machine (SVM) [24] and deci-

sion tree (DT) [2][3][25], but they cannot model the context

information. To solve this problem, the RNN-based method is

applied on LLD to model the context in an utterance during de-

tecting question[4][26]. However, the fixed LLDs features may

be insufficient or inaccurate for robust question detection.

Inspired by these studies, and considering the great poten-

tial of the CNN in spectrogram processing [27][28][29][30], we

proposed a CNN-BLSTM model for question detection. The

whole framework of our approach is illustrated in Figure 1.

Specifically, speech signal at an utterance-level will be pro-

cessed to generate both amplitude-based features and phase-

based features in each time frame according to methods de-

scribed in Section 2. It can be seen from the formulas that the

phase features contain minimal or no amplitude information,

and thus the two independent features could be integrated. The

final combined feature can be represented as:

F
t = [F t

a, F
t
p ], (9)

 

 
 

 

Report of Phoneitc Research 2019

192



Amplitude      Phase

CNN CNN CNN

BLSTM

Softmax

Utterance-level

Speech Signal 

Feature 

Extraction

Decision

Question / Non-question

CNN

Amplitude      Phase Amplitude      Phase Amplitude      Phase

Figure 1: Framework of CNN-BLSTM method on question detection,
⊕

represents a concatenation.

where F t
a and F t

p are the amplitude and phase of the utterance

in time t, respectively.

Here we exploit the CNN to fuse the integrated features of

amplitude and phase, and obtain the high-level representation

of an utterance. Then a softmax layer is adopted to obtain the

prediction of the utterance. Besides, to clarify the significance

of the context information in the dialog, we utilize the BLSTM

to model the context between utterances. As shown in Figure 1,

we use the CNN-output features of a current utterance ut and

previous three adjacent utterances as the input to the BLSTM.

This means that totally four utterances will be processed by the

BLSTM and the label of ut will be finally predicted.

4. Experiment

In this section, we conduct a set of experiments on a dialog cor-

pus in Mandarin to evaluate the effectiveness of our proposed

method for dialog question detection from speech signal.

4.1. Corpus Description

The CASIA-CASSIL Corpus is a restricted-domain corpus,

which is a collection of spontaneous telephone conversations

in the real world between two speakers about making restaurant

reservation [31]. It is co-established by the Institute of Automa-

tion, Chinese Academy of Science, and Institute of Linguistics,

Chinese Academy of Social Science. The data we used contains

195 dialogs with 8062 utterances in Mandarin. The durations of

all the utterances range from 0.08 to 4.2 seconds approximately,

and the number of utterances in each dialog is between 25 and

91. There are totally 2199 (27.3%) question sentences and 5863

(72.2% ) non-question sentences. 80% dialogs are selected ran-

domly as the train set, and the other data are used as the test set.

Finally, we obtained 156 dialogs of the train set including 1749

question sentences, and 4695 non-question sentences. For the

test set, we used 39 dialogs containing 450 question sentences

and 1168 non-question sentences.

4.2. Experimental Setup

In this paper, we use only speech data labeled with question

or non-question. Each sentence is given in the Microsoft wav

format and sampled at 16 kHz. All the features and their sizes

are listed in Table 1. The speech signal is divided into frames

of a 16-ms window size with a shift window of 8 ms. Since

some of the spontaneous utterances are very short, the statis-

tical LLD features cannot be extracted successfully. Consid-

ering the aforementioned work, the 32 frame-level LLD fea-

tures are chosen as the baseline, including 1 energy feature,

12 MFCCs, 1 F0, 2 voicing related features, and 16 first order

derivatives of them. The LLD features of each time frame were

extracted by using the OpenSMILE toolkit [32] with the default

methods. After a padding processing, the final size of LLDs is

530 × 32, which means that each utterance contains 530 time

frames and each frame has 32 attributes. Since the spectrograms

of the data in this corpus have almost no valid information in

the high-frequency domain, 64-dimensional spectrogram (from

0-4000 Hz) is extracted in each time frame. When extracting

MGDCC, α is set to 0.1, and γ is set to 0.2. Totally we obtain

36-dimensional MGDCC features in every time frame, includ-

ing 12 static MGDCCs, 12 ∆MGDCCs, and 12 ∆∆MGDCCs.

When the relative phase is calculated, the base frequency ω is

set to 1000 Hz, and 129-dimensional relative phase features are

extracted in each time frame. In addition to clarifying the role of

the independent features, we checked the effectiveness of sev-

eral combinations of them, which can reflect the relationship

among features combined for detecting question.

To select the optimal structure and parameters, we tested

different numbers of hidden units, layers, etc. For both CNN

and BLSTM, we utilized focal loss as the loss function. The

structure of the CNN applied to the features from 1 to 7 contains

two convolutional layers and two max-pooling layers, while for

features 8 and 9, the CNN consisted of three convolutional lay-

ers and three max-pooling layers. In order to observe the best

performance of each feature, we tried different parameters of

the filter size and pooling size. After a flatten layer, we adopt

a full connected layer with 128 units. A drop out of 0.5 was

applied before output in order to avoid the over-fitting problem.

The BLSTM had two hidden layers, and each had 256 units.

4.3. Experiment Results and Discussions

Table 1 gives the experimental results. The overall accuracy

(Acc), precision, recall, and F1-measure of the question set

were used to compare the performances. It can be seen that the

CNN-BLSTM model with the integrated feature of amplitude

and phase achieves the best performance for detecting question,

which proved the effectiveness of our method. In each experi-

ment, the F1 score of the question set are lower than the overall

accuracy. The reason might be that the utterances labeled with
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Table 1: Experiment features and results.

ID Feature Feature Size Model Acc (%)
Question Set (%)

Precision Recall F1

1 LLD 530× 32 CNN 76.02 58.12 47.33 52.17

2 Spectrogram (Spec) 530× 64 CNN 77.44 61.97 48.89 54.66

3 MGDCC 530× 36 CNN 76.08 58.92 46.22 51.80

4 Relative Phase (RP) 530× 129 CNN 63.91 38.98 52.67 44.80

5 Spec + LLD (Amplitude) 530× 96 CNN 77.07 60.48 50.67 55.14

6 Amplitude + MGDCC 530× 100 CNN 77.19 60.05 53.78 56.74

7 Amplitude + RP 530× 193 CNN 77.44 59.77 57.78 58.76

8 Amplitude + MGDCC + RP 530× 229 CNN 77.13 58.06 64.00 60.89

9 Contextual Amplitude + MGDCC + RP 4× 530× 229 CNN-BLSTM 77.13 57.84 65.56 61.46

question hold a proportion lower than 30%. From the results,

we can draw conclusions carefully: 1) The spectrogram outper-

forms the baseline LLD by 5.21% relative error reduction of F1

in the question set. It indicates that the spectrogram can be used

as a good feature to detect questions from the speech signal.

2) The combination of the spectrogram and the LLDs performs

better than each of them alone, which shows the complementary

relationship of the spectrogram and human a prior knowledge

based LLDs. 3) The combined feature with both amplitude and

phase information outperforms the methods that use spectro-

gram or phase alone. Comparing the experiments 5 with 8, the

relative error reduces by 12.82% in terms of F1 in the question

set. The results suggest that there is a complementarity between

the amplitude and phase. This conclusion is also proved by the

better performance of the MGDCC than the relative phase, be-

cause the MGDCC contains amplitude information while the

relative phase does not. 4) The CNN-BLSTM based method

can model the context information between utterances. Com-

pared with the CNN-based method without contextual informa-

tion, the result of the contextual method surpassed it by 1.46%

relative error reduction in F1 score. It indicates that the context

between utterances is helpful for detecting questions.

To clarify the effect of the phase information, we perform a

statistical analysis on the predictions of the CNN-based model

with only amplitude and the CNN-based model with the inte-

grated feature including the amplitude and phase. The duration

of utterances in the test set has the mean of 1.31 s and a vari-

ance of 0.83 s. After careful observation and comparison, we

divided the test set into two subsets according to the duration

of the utterances. One of the subsets consists of 738 (45.61%)

utterances with the duration less than 1 second, while the other

subset contains the remaining utterances. As shown in Table 2,

when the phase information was used, both the absolute error

and the relative error of the F1 score in the question set reduced

in the whole test set and every sub-test-set. Furthermore, the

absolute and the relative error reduced further in the subset con-

taining utterances less than 1 second. The results indicated that

the phase information was highly contributing to detect the short

questions. The traditional account is that the questions are of-

ten associated with a terminal F0 rise, and the F0 variations are

accompanied by certain changes of voicing activities. However,

when the utterance is very short, the dynamic information of F0

variations is not enough for the model to recognize whether it

has a rising trend. In such an ambiguous case, according to our

results, the phase information played a complementary role to

detect the question. Therefore, it is reasonable to conjecture that

the phase information may reflect such alterations of the source

sounds signaling the tendency of the voicing activities.

In addition to the phase information, we compared the

Table 2: Comparison between using amplitude features (Amp)

only and the combined feature of amplitude and phase in differ-

ent test sets. U d represents the duration of the utterances. Acc

denotes the overall accuracy (%). AER, RER denotes the abso-

lute error reduction, and the relative error reduction of F1 score

in Question set when considering phase features, respectively.

Test Set Feature Acc
Question Set (%)

F1 AER RER

All
Amp 77.07 55.14

5.75 12.82
Amp+Phase 77.13 60.89

U d ≥ 1 s
Amp 69.77 57.66

3.77 8.90
Amp+Phase 69.32 61.43

U d < 1 s
Amp 85.77 47.76

11.59 22.19
Amp+Phase 86.45 59.35

results when the context information between utterances was

added. It was found that questions without special interrogative

forms (such as a statement form) could be detected better when

the context information between utterances is employed. In

this kind of data, the CNN-BLSTM method outperforms CNN

method by a 14.3% relative error reduction in terms of accuracy.

5. Conclusion

In this study, we proposed a CNN-BLSTM based framework

with the combined feature of amplitude, phase, and context be-

tween utterances for detecting question from speech signals in

Mandarin dialogs. To the best of our knowledge, our work is the

first one to combine the spectrogram and LLDs, and integrate

amplitude with phase information in a question detection task.

In addition, it is the first work for question detection that com-

bines the CNN and BLSTM to model the context information

between utterances. The experimental results demonstrated the

effectiveness of our method, and the functions of the phase and

context were discussed in detail. In the future, we will concen-

trate on further investigation on phase and amplitude features as

well as improving the imbalanced classification strategy.
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