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Abstract—Based on the incremental nature of knowledge
learning, in this study a growing self-organizing neural network
approach for modeling the acquisition process of semantic fea-
tures is proposed. The Growing Self-Organizing Map (GSOM)
algorithm is extended and applied to the problem of language
acquisition. Based on that algorithm, experiments are conducted
using Standard German children’s books corpus. A cyclic re-
inforcing and reviewing training procedure is introduced to
model the teaching and learning process between children and
their communication partners. Experimental results indicate that
(1) GSOM has good ability to learn the semantic categories
presented within the training data, that (2) clear semantic
boundaries can be found in the network representation, and that
(3) cyclic reinforcing and reviewing training leads to a detailed
categorization of lexical items as well as to a detailed clustering,
while keeping the already learned clusters and already developed
network structure stable. Experiments show that our GSOM
approach is a good method for modeling semantic learning during
language acquisition.

Keywords—Neural network, growing self-organizing map, se-
mantic feature map, language acquisition

I. INTRODUCTION

During language acquisition, infants face the task of
learning various kinds of information and of organizing that
information into linguistic categories. During that process,
however, infants do not receive explicit language instructions,
nor are they able to make inquiries about the structure that
they are learning [1]. Instead, they must discover the linguistic
categories of their native language from their interactions with
communication partners. The task is further complicated by the
fact that they do not know how many categories to discover
along any particular input dimension [1]. The appropriate
underlying learning mechanisms for infants, however, are still
unclear. In this study we propose a feasible approach that
it is capable to explain the acquisition process of semantic
categories. That approach can contribute to the merging pro-
cess of Information and Communication Technologies [3] and
Cognitive Infocommunications [2] to some extent by modeling
the teaching and learning process between infants and their
communication partners.

Kohonen [4] proposed a kind of self-organizing neural
network, known as the Self-Organizing Map (SOM), which

has the ability to project high-dimensional data onto a two-
dimensional feature map. Its high visualizing feature enables
the analyst to overview the category structures of a data set.
Later, Ritter and Kohonen applied the SOM algorithm onto
semantic tasks [5]. Their research revealed that SOM has the
ability to detect the “logical similarity” between words and
group similar words into clusters.

In recent years, the topographic perceiving feature and the
self-organizing ability of SOM have been applied increasingly
for tasks on modeling the human acquisition process. In
linguistic field, for example, Kroger et al. [6] modeled the
acquisition of vowel and consonant categories using SOM,
Zinszer et al. [7] developed a SOM model which models the
first language lexical attrition phenomenon, and Warlaumont
et al. [8] investigated the reinforcement effect on vocal motor
learning based on SOM.

Although SOM is reasonable for modeling the topographic
structure and the knowledge reorganization of a learning
process, it does have limitations in modeling the incremental
nature of knowledge growth. Due to the phenomenon of
catastrophic interference [9], SOM has difficulties in adapting
new knowledge into an existing trained network. In other
words, the structure of SOM cannot be extended easily, thus
cannot be directly used to model the knowledge learning
process realistically.

Many researchers made an effort aiming to overcome that
problem, such as the Growing Cell Structures (GCS) proposed
by Fritzke [10] and the Neural Gas Algorithm (NGA) proposed
by Martinetz and Shulten [11]. However, GCS has limitations
in representing high dimensional data, while NGA is restricted
by its limited map size. Those algorithms, therefore, are not
suitable for modeling linguistic categories.

Exploring extendable SOM in data mining field, Alahakoon
et al. [12] proposed an extendable version of SOM called the
Growing Self-Organizing Map (GSOM), which let new nodes
smoothly join the existing network and dynamically extend the
size of the network. Its dynamic structure was proved to be
very effective for knowledge discovery applications.

In this paper, that Growing Self-Organizing Map algorithm
is adapted for language acquisition modeling.
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Fig. 1: The initial structure of GSOM. (a) The network can
be expanded to any direction at the beginning. (b) New nodes
can grow the network at boundary nodes. [12]

II. GROWING SELF-ORGANIZING MAP
A. Structure of Growing Self-Organizing Map

Compared with traditional SOM, the structure of Growing
Self-Organizing Map (GSOM) is simpler. Instead of having
a size-predetermined rectangular map, the network of GSOM
does not have a fixed size or shape. Starting from 4 initial
nodes, new nodes can grow at boundary nodes and smoothly
join the existing network (see Fig. 1b). Thus, the network can
be dynamically expanded to any direction outwards depending
on the new growing nodes (see Fig. 1a).

Two factors, the accumulative error (AE) and growth
threshold (GT), are introduced into GSOM. The error value is
calculated by the Euclidean distance between an input vector
and the weight vector of the best matching unit (BMU). Thus,
each BMU node has an error value as an additional charac-
teristic parameter, and its value is accumulated throughout the
training process. When the AE value of a BMU exceeds the
value of GT, that corresponding Voronoi region [13] is said
to be underrepresented, and new nodes are then introduced to
the network. A high GT value will result in a less spread map,
while a low GT value will produce a well-spread map [12].

B. Basic Training Process

Training data (i.e. A set of N training items consisting of
feature vectors) are treated as input tokens for the network
training process. The basic training process of Growing Self-
Organizing Map contains 2 phases:

1) Initializing Phase: At the beginning, 4 neurons are
initialized. Their weight vectors are assigned randomly within
interval 0 and 1, and their AE values are initialized to 0. Instead
of stated in [12], in our approach, GT is set arbitrary to fit our
experimental requirements.

After initialization, all starting nodes are boundary nodes
and thus are free to grow in any direction outwards. That
results in great flexibility concerning network growth.

2) Growing Phase:

a) : Input tokens are presented to the network one by
one sequentially. Each token will be trained for several times
before next token enters. That is consistent with the gradual
learning process in practice: parents often teach their children
just one word at a time, and repeat it for several times.

b) : In GSOM, the weight update and network reorgani-
zation processes are performed locally. Therefore, learning rate
and neighborhood size are initialized to their initial value with
each new input token. The learning rate is defined as a function
of the total number of nodes in the network by (1), where
a is the reduction factor of learning rate with 0 < a < 1;
©(n) =1— R/n(t) is a function of the total number of nodes
in current network; R is a constant set to 3.8 as in [12]; and
n(t) is the number of nodes in the network at time ¢.

LR(t+1) =a x ¢(n) x LR(t) (1)

c) : The distances between weight vectors and training
vectors are calculated using Euclidean distance measure, and
the best matching unit (BMU) with minimum distance is
detected within the network for the current training token.

d) : If the AE value of this BMU exceeds GT and this
BMU is a boundary node, then new nodes grow at all free
direct neighboring positions. Then weight vectors of new nodes
are initialized with regard to the weight vectors of this BMU
and its neighbors (that process is called weight distribution).

e) : If the AE value of this BMU does not exceed GT,
then weight update is applied to this BMU and its neighbors
within the neighborhood. Gaussian distribution is chosen as
a part of the neighborhood function that can be represented
by h(t) = B x exp(—d?,/20?), where (3 is the reduction
factor of neighborhood size with 0 < 8 < 1; d;, represents
the distance between weight vector ¢ in BMU and training
vector xz; o represents the current neighborhood size. The
weight update function can be expressed by (2). The Euclidean
distance between this BMU vector and the training vector is
accumulated as the AE value of this BMU.

wi(t+1) = w;(t)+ LR(t) x h(t) x (z(t) —w;(t)),i € N (2)

f) : If the AE value of this BMU exceeds GT but
this BMU is not a boundary node, then error distribution is
performed. Then, the error value of this BMU is reduced to
GT/2, and the error values of its immediate neighbors are
increased by YGT' (0 < v < 1).

g): Then several iterations are done for the current
training token (go through steps c¢) to f) several times). The
learning rate and neighborhood size decrease at each iteration.
The iteration process stops when neighborhood size reduces
to unity.

h): Then, the next training token is processed by
repeating steps b) to g) until all training tokens are presented.

C. Checking Process

The checking process does not change the network. It is
performed to check whether the trained network has learned
a good representation of categories represented within the
training data, by identifying the winner positions in the trained
network for each token. That can be considered as a calibration
phase if known data are used [12]. The closeness of each
token to each neuron in the network is measured by Euclidean
distance.



D. Reinforcing and Reviewing Training

During language learning process, children cannot learn the
whole knowledge (i.e. all semantic categories represented by
the training tokens) at once, so that imperfections in clustering
are inevitable. During semantic acquisition, those errors could
represent a current incapability of distinguishing words with
different meanings. Reflected in the network, that fact is
represented by those neurons which represent many words
after performing the checking process. This is comparable to
the following natural learning situation: when parents teach
their children, and if they find that some words are always
confused by their children, parents will repeat those words
and reinforce the differences between those words, in order
to help their children get them distinguished. During that
reinforcement process, some learned words will also show up
in the communication between parents and children.

When growing phase is completed and checking is per-
formed, the trained network may end up with some “unsolved”
edge nodes, which means some nodes may represent the
characteristics of many tokens comprising different semantic
categories. In order to resolve those “high-density” nodes, a
series of additional reinforcing and reviewing training can be
performed.

During the reinforcing phase, the trained network from
growing phase is the starting network. The training process is
similar to that in the growing phase. Training data are consisted
of those words represented by “high-density” neurons in the
checking results. The initial learning rate is increased to give
more weights to the input token, and the GT value is decreased
to stimulate the network growth at “high-density” nodes.

During the reviewing phase, the trained network from
current reinforcing phase is the starting network. The training
process is similar to that in the growing phase. Compared with
reinforcing phase, more tokens from the training set are used
in the reviewing process to simulate the reoccurring of learned
words. The initial learning rate and the GT value are set to the
same as those in the growing phase.

A reinforcing phase followed by a reviewing phase together
forms a combined training process of reinforcing and review-
ing training. According to our experimental requirements, this
combined training process repeats in a cyclic (or iterative) way
for several times.

III. EXPERIMENT AND RESULTS
A. Standard German Children’s Books Corpus

In this study, the Standard German children’s books corpus
[14] was used as the basis for generating our training set. The
Standard German children’s books corpus comprises transcrip-
tions of 40 books targeted to children from age 1 to 6. In
total, 6513 sentences and 70512 words are transcribed in this
corpus. Morphologically distinct forms of the same word are
counted as separate words (e.g. “Blume” meaning flower and
“Blumen” meaning flowers, are treated as two different words).
The corpus therefore consists of 8217 different words, which
is assumed to approximately represent a 6-years-old child’s
mental lexicon. In this study, only nouns were used as training
data, and only the first 332 most frequent nouns were chosen.
The top ten frequent nouns are listed in TABLE 1.

TABLE I: Top ten frequent nouns in the 332 word data set

Frequency counts | Frequency counts German English
in corpus in training data words translation

392 78 Mama mom
278 55 Bir bear
235 47 Papa dad
217 43 Mond moon
190 38 Kinder children
147 29 Katze cat
145 29 Frau wife
106 21 Bett bed
105 21 Midchen girl
104 20 Wasser water

B. Training Data Set

Two native speakers of Standard German (undergraduate
students from RWTH Aachen University) developed a list of
semantic features for the corpus by a simple brain storming
procedure. In total, 1715 features were developed. To reduce
dimensions of the training vectors, we dropped features which
only occur once, while keeping all words distinguishable by
their semantic features. Finally, 724 features were kept (the
top ten features are listed in TABLE II). Therefore, each word
in our training data set is represented by 724 feature vectors.
Binary coding is used for the representation of each word.
Thus, for each word, among its 724 vectors, “1” is used to
mark its own features and “0” is used to mark features not
belong to this word.

To model the semantic acquisition process, the frequency
of word occurrence was taken into account when building
the training set. The words were presented proportional to
the frequency of occurrence of a word in the corpus (see the
second column of TABLE I).

The 332 words arranged in sequence by descending order
of their frequency counts constitute the basis of the training set.
Based on that, repeated words were randomly inserted to the
332-word list regarding to the frequency counts of each word.
To keep the frequency order, we exclusively allowed higher
frequent words to be inserted after lower frequent words. For
example, the first rank is “Mama” and then “Béar”. After “Bir”,
“Mama” has 50% possibility to be inserted. Then the next
rank is “Papa”. After “Papa”, “Mama” and “Bér” each has
50% possibility to be inserted. The insertion of certain words
would be stopped when words reached their frequency counts.
In total, 1929 word tokens comprised our training data set.

C. Experiment Procedure and Results

As introduced in Section II-B and Section II-D basic
growing training and reinforcing and reviewing training exper-
iments were conducted respectively. The experiment process
was divided into 21 training steps. Step 1 represents the basic
growing training. The following 20 steps represent the steps in
the cyclic reinforcing and reviewing training (from step 2, even
numbers represent reinforcing training steps and odd numbers
represent reviewing training steps). In total, one basic growing
training and 10 cycles (20 steps) of reinforcing and reviewing
training were performed in this experiment. The 1929-word



TABLE II: Top ten semantic features in the 332 word data set

Frequency German features English translation
81 ist ein Gegenstand is an object
63 hat zwei Augen has two eyes
60 es gibt verschiedene Arten | there are different types
56 hat einen Kopf has a head
47 hat eine Nase has a nose
46 hat zwei Beine has two legs
42 hat eine Haut has a skin
37 ist aus Kunststoff is made of plastic
37 ist aus Metall is made of metal
36 ist ein Mensch is a human

training set was used as the main training data, and the 332-
word list (see Section III-B) was used as the testing set.

1) Basic growing training: First, a growing training was
performed based on the training set of 1929 training tokens
with 724 feature vectors in each. After training, a checking
process was done by inputting the 332-word list with their
feature vectors to the trained network, and winner neurons
were found. The trained network structure and the checking
result are shown in Fig. 2.

From Fig. 2, general clusters of semantic categories can be
found, such as “Persons”, “Animals”, “Clothes”, “Transporta-
tion”, “Housewares”, “Snacks” and “Body parts”. That proves
GSOM has the ability to learn the semantic categories in the
training data and build semantic clusters even with such high
dimensional training vectors. A separation between “Living”
and “Dead” can be seen that “Living” things are located on the
top-left and down-right part, while “Dead” things are located
through the middle part.

In the network, some neurons represent more than one
word. Taking a closer look at the position of those neurons,
we find most of them are located at the edge areas of the
network. With proper reinforcing and reviewing training, we
expected those neurons at network edge areas could stimulate
the network to grow further in that region in order to resolve
those words represented by a “high-density” neuron.

2) Cyclic reinforcing and reviewing training: Based on the
current trained network, a cyclic reinforcing and reviewing
training was conducted. Each cycle contains two phases, a
reinforcing phase and a reviewing phase. The trained network
in each step was used as the starting network of next step.

For the reinforcing phase, in each current trained network,
by examining the checking result, if a neuron represents more
than 4 words, or the average Euclidean distance between the
neuron and its represented words is bigger than 2.5, those
corresponding words are then taken as the further training data.
For simplicity, no frequency influence was considered in this
phase. For example, 218 words were chosen for the first re-
inforcing training step. The trained network from the growing
training was used as the starting network of the first reinforcing
training step. The initial learning rate was increased to give
more weights to the input token simulating the reinforcement
from parents, and the GT value was decreased to stimulate the
network growth at those “high-density” node regions.

For the reviewing phase, the starting network was the

Fig. 2: The trained network structure and checking result of
basic growing training. (Filled nodes represent those neurons
with word representations;, empty nodes represent neurons
without word representations. Red nodes represent those neu-
rons whose average Euclidean distance between its represented
words and itself is smaller than 0.5; blue nodes represent
neurons with average distance bigger than 0.5. Labels beside
nodes are the best represented word of that neuron and
numbers blow are the number of words represented by that
neuron. Annotations in the figure represents different semantic
clusters, and solid lines represent cluster boundaries.)

trained network from current reinforcing phase. The 332-word
list comprised the training set. The initial learning rate and the
the GT value were set to the same values as those of growing
training in Section III-CI.

After each training step, the same 332-word checking (as
already used for the growing training) was performed. The
trained network structure and the checking result of the first
reinforcing training phase are shown in Fig. 3. From Fig.
3, we can clearly see a growth at the down-left part of the
network. Among those neurons, lots of “high-density” neurons
have been resolved, and only a few still exist. In addition,
more words are represented across the retrained network. Some
local reorganization can be noticed during this reinforcement
training procedure. However, the learned clusters are clearly
kept and no catastrophic interference is caused by the reinforc-
ing training. In addition, some new clusters such as “Time”,
“Plants”, “Places”, “Numbers”, “Names” and “Minds” are
formed at the expanded parts of the network. Those results
indicate that the reinforcing training can help the network
distinguish “unsolved” words and build more detailed clusters
while keeping the learned network structure stable.

The trained network structure and the checking result after
10 training cycles are shown in Fig. 4. From Fig. 4, we
can see that the down-left part of the network in Fig. 3 has
developed into a network with comparable size and shape
of the upper part. Although very few “high-density” nodes
still exist, the whole network are now very well developed.
Although some reorganizations happen, the learned clusters
and network structure in the network in Fig. 3 are well kept and
not destroyed by the cyclic reinforcing and reviewing training.
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Fig. 3: The trained network structure and checking result of
the first reinforcing training phase. (Please refer to Fig. 2 for
figure caption)

Fig. 4: The trained network structure and checking result after
the final step of cyclic reinforcing and reviewing training.
(Please refer to Fig. 2 for figure caption)

IV. PERFORMANCE ANALYSIS

The performance of our GSOM algorithm in modeling
semantic acquisition is further analyzed in this section. The
analysis is divided into 21 steps to track the training result of
each step of the experiment process.

A. Network Expansion

During the training process, the network keeps growing.
Fig. 5 shows the growing trends of total number of nodes
and the number of nodes with word representations. Both
of them increase sharply after the first reinforcing training.
The huge peak in Fig. 6 also indicates a significant expansion
of a branch network after the first reinforcing training. That
increase is consistent with the growth shown in Fig. 3. Then,
the network keeps expanding itself, but the increasing rate
gradually decreases. The curve in Fig. 6 declines with the
training process after the first reinforcing training, and then
gradually becomes stable. That reveals the process that the
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Fig. 5: Total number of nodes and number of nodes with word
representations. (blue doted line represents the total number
of nodes, red solid line represents the number of nodes with

word representations)

Ratio of Boundary Nodes among All Nodes in the Network
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Fig. 6: The ratio of number of boundary nodes over total
number of nodes in the network.

network occupies another nearby neuron region after the
first reinforcing training and gradually forms into a compact
network. The final network ends up with a reasonable size of
934 nodes, and a good neuron representation resolution of 279
words (84% of all words are resolved).

B. Semantic Representation

During the training process, the network gets gradually
better semantic representation of words. Fig. 7 shows the
maximum number of words represented by a single neuron. A
generally declining trend can be found with the development of
the cyclic reinforcing and reviewing training. Although some
fluctuations can be noticed during the middle and late stages
of the training process, the average words represented by a
neuron in the network decreases continuously as shown in Fig.
8. That means the cyclic reinforcing and reviewing training can
help the network resolve “high-density” nodes, thus can help
children to disambiguate the meaning of words in the case of
clustered words at one node.
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Fig. 7: The maximum number of words represented by a
neuron in the network.
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Fig. 8: Average number of words represented by a neuron
among all those nodes with word representations.

V. DISCUSSION AND CONCLUSION

In this paper, the Growing Self-Organizing Map algorithm
is extended and introduced as an approach to model the
acquisition process of semantic features. Its self-organizing
ability enables it to model the clustering of semantic categories,
and its dynamic growing structure enables it to model the
incremental nature of knowledge growth. By reading in inputs
one at a time and training it for iterations till the next, the
training process of GSOM simulates the gradual learning
process in practice. By introducing the GSOM algorithm based
on the accumulative error and growth threshold factors, the
network can produce a vivid biologic picture of the knowledge
learning process. The weight distribution passes the neighbor-
hood structure to the new adding nodes, so that the network
structure can keep stable throughout the growing stage. Its
learning rate adaptation and localized weight update rules
ensure that tokens enter relatively late can also occupy their
stable regions in the network.

Based on our GSOM algorithm, the semantic acquisition
process was modeled by a cyclic reinforcing and reviewing
training. The reinforcing training steps simulate a situation
in which communication partners repeat confusing words and
reinforce their specific meaning in order to help their children

(the network) to get them distinguished. The reviewing training
steps simulate the reoccurring of some already learned words
during the reinforcement learning process. From experiment
results, our GSOM algorithm in combination with the use
of reinforcing and reviewing procedures shows good ability
to learn the semantic features in the training data and build
semantic clusters even with such high dimensional training
vectors. From the checking results, clear semantic boundaries
can be found in the network neuron representation. Thus,
cyclic reinforcing and reviewing training is proved to be able
to help the network distinguish “unsolved” words and build
more detailed clusters while keeping the learned clusters and
network structure stable.

Although the GSOM is a highly abstract neurocomputa-
tional model, it could be carefully interpreted as biologically
plausible to a specific degree, because it incorporate important
neurofunctional principles like self-organization, associative
learning, Hebbian learning, adaptation, and neural plasticity.
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